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Abstract

Numerically predicted values of the Nusselt number are presented for annuli with uniform heating of the outer sur-

face only, uniform equal heating of both surfaces, and uniform heating of one surface and equal cooling of the other.

Results are also presented for a parallel-plate channel with isothermal heating of one wall and equal isothermal heating

of both walls. The predictions are based on semi-theoretical expressions for the dimensionless turbulent shear stress but

are insensitive to the limited empiricism within the model for convection. The predicted values of Nu are in good agree-

ment with the somewhat limited experimental data for these less frequently encountered thermal boundary conditions.

The results encompass all values of the Prandtl number and all values of the Reynolds number of practical concern.

These values, together with those in a preceding paper for uniform heating of the inner wall only, and together with

the generalizations described in a succeeding paper, permit the accurate prediction of the Nusselt number from theo-

retically based algebraic expressions for essentially all of the thermal conditions that result in fully developed

convection.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The most important application of turbulent convec-

tion in an annulus is as the outer channel of a double-pipe

heat exchanger with countercurrent flow. This behavior is

closely represented by the idealized condition of fully

developed convection in the fully developed flow of a
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fluid with invariant physical properties, a uniform heat

flux across the inner tube wall, and perfect insulation

on the outer wall. As a first step in modeling this behav-

ior, an essentially exact solution was developed by

Kaneda et al. [1] for fully developed turbulent flow in a

concentric circular annulus for all aspect ratios by means

of the step-wise numerical integration of a differential

model in which the turbulent shear stress was represented

directly by algebraic expressions constructed from theo-

retically structured asymptotes. As contrasted with the

prior use of this methodology for a round tube and a par-

allel-plate channel, empirical expressions were necessarily
ed.
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Nomenclature

a radius of annulus (m)

a+ dimensionless radius of annulus [a(swq)
1/2/l]

c specific heat capacity (J/kgK)

h heat transfer coefficient [jw/(Tw � Tm)] (W/

m2K)

k thermal conductivity (W/mK)

j radial heat flux density (W/m2)

Nu Nusselt number [2h(a2 � a1)/k]

Nu0 Nu{Pr = 0}

Nu1 Nu{Pr = Prt}

Nu* 2jw(a2 � a1)/k(T1 � T2)

Pr Prandtl number [cl/k]
Prt turbulent Prandtl number

Prðu0v0 Þþþ
1�ðT 0v0 Þþþð Þ

ðT 0v0Þþþ 1�ðu0v0Þþþð Þ

� �

R radius ratio [r/a1]

Re Reynolds number [2(a1 � a2)um/l]
T temperature (K)

T+ kðqsw1Þ1=2ðTw1 � T Þ=ljw1
u axial component of time-averaged velocity

(m/s)

u+ dimensionless axial velocity [u/(qsw1)
1/2]

um mixed-mean axial velocity (m/s)

u0v0 time-averaged product of fluctuating com-

ponents of the velocity

ðu0v0Þþ dimensionless shear stress b�qðu0v0Þ=swc
ðu0v0Þþþ

fraction of local total shear stress due to tur-

bulence ½�qðu0v0Þ=s

T 0v0 time-averaged product of fluctuating tem-

perature and radial velocity

ðT 0v0Þþþ
fraction of total local radial heat flux density

due to turbulence qcðT 0v0Þ=j
l dynamic viscosity (Pas)

q specific density (kg/m3)

s shear stress (Pa)

Subscripts

A adiabatic

H uniformly heated on one wall

HC uniformly and equally heated and cooled

(jw1a1 = �jw2a2)

HH uniformly and equally heated on both walls

(jw1a1 = jw2a2)

i on inner surface

m mean value

o on outer surface

T isothermally heated

w1 based on the inner wall

w2 based the outer wall

wm based on mean shear stress on the walls
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introduced for the location of the zero in the total shear

stress and for the maximum in the velocity distribution

within the annulus. The excellent agreement of the pre-

dictions of the time-averaged velocity distribution and

the mixed-mean velocity (and thereby the overall friction

factor) with experimental data implies that the error

introduced by these two empirical expressions and by

the empirical coefficients in the representation for the tur-

bulent shear stress is negligible for all practical purposes.

Algebraic predictive equations based on the same asymp-

totes reproduce the computed values of the time-aver-

aged velocity distribution and the mixed-mean velocity

almost exactly. These expressions are properly designated

as ‘‘predictive’’ rather than ‘‘correlative’’ because they

were formulated without reference to the computed or

experimental values themselves. Step-wise numerical

solutions were next carried out by Yu et al. [2] for fully

developed convection in fully developed flow with uni-

form heating of the inner surface only, which is the most

important case from a practical point of view. These

numerical solutions were based on integration of the dif-

ferential energy balance using an empirical expression for

the local fraction of the radial transport of energy due to

turbulence. The computations encompassed a complete

range of values of Pr, a wide range of values of Re, and
a wide range of aspect ratios. The computed values of

Nu were found to be fortuitously insensitive to the uncer-

tainty introduced by the single added empiricism beyond

that for flow, namely an expression for the turbulent

Prandtl number, and to be in good agreement with exper-

imental data for air, water, and mercury. Generalized

algebraic predictive equations were devised to represent

the computed values ofNu in terms ofNu0,Nu1, andNu
1
1.

Numerically computed solutions for Nu are pre-

sented herein for several other thermal boundary con-

ditions for annuli, namely, (1) uniform heating on the

outer surface only, (2) equal uniform heat fluxes on

the two surfaces, and (3) uniform heating on one sur-

face with equal cooling on the other. It should be noted

that the behavior for equal uniform heating and cool-

ing is equivalent to that for unequal uniform tempera-

tures in that, as contrasted with all the other cases, the

fluid temperature does not then vary longitudinally.

Values of Nu are also presented for parallel-plate chan-

nels (annuli with an aspect ratio of unity) for two addi-

tional conditions, namely, isothermal heating on one

surface only and equal isothermal heating on both

surfaces.

Auniformwall temperaturemay be closely attained by

boiling or condensation on the inner or outer surfaces of
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an annulus owing to the higher heat transfer coefficients

for these two processes as compared to the coefficients

for the transfer of sensible heat by forced convection.Uni-

form heating of a surface may be attained electrically or
Table 1

Computed values of Nu0 for uniform heating of the outer surface on

a1/a2 0.01 0.05 0.1 0.2 0.5

ðaþ2 � aþ1 Þw1 Nu0oHA

500 5.303 5.332 5.36 5.415 5.574

800 5.353 5.384 5.405 5.456 5.609

1000 5.381 5.403 5.423 5.471 5.623

2000 5.442 5.451 5.466 5.51 5.656

5000 5.494 5.506 5.546 5.685

10,000 5.521 5.529 5.566 5.702

20,000 5.548 5.583 5.715

50,000 5.569 5.601 5.728

100,000 5.582 5.611 5.735

200,000 5.619 5.739

500,000 5.621 5.734

Table 2

Computed values of Nu1 for uniform heating of the outer surface on

a1/a2 0.01 0.05 0.1 0.2 0.5

ðaþ2 � aþ1 Þw1 Nu1oHA

500 33.69 37.66 39.22 40.60 41.98

800 50.49 57.17 59.80 61.93 64.03

1000 61.14 69.98 73.20 75.77 78.33

2000 114.0 132.3 137.8 142.2 147.0

5000 311.1 320.2 328.8 339.8

10,000 583.4 608.8 622.5 643

20,000 1162 1182 1220

50,000 2750 2776 2860

100,000 5206 5317 5465

200,000 10,240 10,480

500,000 24,660 24,980

Table 3

Computed values of Nu0i for equal uniform heating on both surfaces

a1/a2 0.01 0.05 0.1 0.2 0.5

ðaþ2 � aþ1 Þw1 Nu0iHH

500 61.65 21.87 15.33 11.67 9.678

800 61.78 21.91 15.37 11.72 9.77

1000 61.77 21.92 15.39 11.74 9.805

2000 61.8 21.95 15.42 11.78 9.885

5000 21.97 15.44 11.81 9.951

10,000 21.97 15.45 11.82 9.987

20,000 15.45 11.83 10.01

50,000 15.46 11.84 10.05

100,000 15.46 11.85 10.07

200,000 11.86 10.11

500,000 11.89 10.17
be approached for isoenthalpic countercurrent flow in

double- or triple-pass annular exchangers. Thus all of

the thermal boundary conditions considered have some

practical interest, at least in an asymptotic sense.
ly

0.8 0.9 0.95 0.99 0.999

5.689 5.717 5.730 5.739 5.741

5.721 5.748 5.760 5.769 5.771

5.733 5.76 5.772 5.781 5.783

5.762 5.788 5.8 5.808 5.810

5.788 5.813 5.824 5.832 5.833

5.802 5.826 5.836 5.844 5.846

5.812 5.836 5.846 5.854 5.855

5.823 5.846 5.856 5.863 5.864

5.828 5.85 5.859 5.866 5.868

5.829 5.85 5.859 5.866 5.867

5.819 5.839 5.847 5.853 5.855

ly

0.8 0.9 0.95 0.99 0.999

42.30 42.30 42.29 42.27 42.27

64.55 64.57 64.56 64.55 64.54

79.00 79.04 79.03 79.02 79.01

148.5 148.6 148.7 148.7 148.7

344.0 344.6 344.8 345.0 344.9

651.8 653.5 654.1 654.5 654.4

1239 1243 1244 1245 1245

2907 2917 2921 2924 2925

5558 5579 5588 5595 5596

10,660 10,700 10,720 10,730 10,730

25,340 25,430 25,470 25,490 25,490

0.8 0.9 0.95 0.99 0.999

9.775 9.948 10.05 10.14 10.17

9.922 10.12 10.23 10.33 10.36

9.978 10.18 10.3 10.41 10.43

10.11 10.34 10.47 10.59 10.61

10.23 10.47 10.62 10.74 10.77

10.29 10.55 10.7 10.83 10.86

10.35 10.61 10.77 10.91 10.94

10.41 10.69 10.85 11.00 11.03

10.46 10.75 10.92 11.06 11.10

10.51 10.82 10.99 11.14 11.18

10.62 10.94 11.13 11.29 11.33
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In the interests of convenience and clarity, the limited

experimental data and prior numerical solutions for uni-

form heating of the outer wall and for uniform heating
Table 4

Computed values of Nu1i for equal uniform heating for both surfaces

a1/a2 0.01 0.05 0.1 0.2 0.5

ðaþ2 � aþ1 Þw1 Nu1iHH

500 102.8 51.42 48.48 47.50 49.54

800 106.0 79.01 74.72 72.77 75.28

1000 121.8 97.51 91.88 89.17 91.93

2000 231.1 189.6 175.1 168.0 171.8

5000 465.1 412.8 389.7 395.2

10,000 871.9 792.6 739.5 745.6

20,000 1529 1408 1412

50,000 3683 3322 3300

100,000 6975 6397 6306

200,000 12,420 12,110

500,000 30,640 29,110

Table 5

Computed values of Nu0o for equal uniform heating on both surface

a1/a2 0.01 0.05 0.1 0.2 0.5

ðaþ2 � aþ1 Þw1 Nu0oHH

500 16.32 16.57 16.21 15.19 12.54

800 17.55 17.5 17.05 15.87 12.92

1000 17.92 17.88 17.39 16.14 13.08

2000 18.96 18.84 18.24 16.82 13.45

5000 19.70 19.01 17.44 13.79

10,000 20.16 19.45 17.80 13.98

20,000 19.8 18.09 14.13

50,000 20.19 18.42 14.30

100,000 20.45 18.63 14.41

200,000 18.82 14.50

500,000 19.04 14.56

Table 6

Computed values of Nu1o for equal uniform heating for both surface

a1/a2 0.01 0.05 0.1 0.2 0.5

ðaþ2 � aþ1 Þw1 Nu1oHH

500 48.39 73.14 73.54 69.90 61.58

800 80.63 105.0 105.4 102.2 91.92

1000 105.5 123.6 125.4 122.8 111.5

2000 180.5 205.1 218.4 220.6 204.4

5000 407.0 466.7 487.5 461.4

10,000 761.7 839.2 896.5 859.4

20,000 1518 1657 1608

50,000 3332 3751 3699

100,000 6341 6967 6966

200,000 12,910 13,130

500,000 28,760 30,300
but unequal heating on both walls are discussed in the

context of comparisons with the new computed results

rather than here in advance.
0.8 0.9 0.95 0.99 0.999

52.49 53.50 54.00 54.41 54.50

79.42 80.84 81.55 82.12 82.25

96.83 98.52 99.37 100.0 100.2

180.2 183.0 184.5 185.7 185.9

412.7 418.7 421.7 424.1 424.7

776.3 787.0 792.3 796.4 797.4

1466 1485 1494 1501 1503

3416 3455 3475 3491 3494

6506 6576 6611 6638 6644

12,450 12,570 12,640 12,680 12,690

29,700 29,940 30,060 30,160 30,180

s

0.8 0.9 0.95 0.99 0.999

10.91 10.51 10.33 10.20 10.17

11.15 10.73 10.54 10.40 10.36

11.25 10.81 10.62 10.47 10.44

11.48 11.02 10.81 10.65 10.62

11.69 11.20 10.98 10.81 10.78

11.80 11.30 11.07 10.90 10.86

11.90 11.38 11.14 10.97 10.93

12.00 11.46 11.22 11.04 11.00

12.05 11.51 11.26 11.08 11.04

12.09 11.54 11.29 11.11 11.07

12.10 11.53 11.28 11.10 11.06

s

0.8 0.9 0.95 0.99 0.999

56.76 55.56 55.02 54.60 54.51

85.38 83.73 82.98 82.40 82.27

103.9 101.9 101.0 100.4 100.2

192.0 188.8 187.3 186.2 185.9

436.7 430.3 427.3 425.1 424.6

817.6 806.6 801.6 797.7 796.9

1536 1518 1509 1502 1501

3554 3516 3498 3485 3482

6724 6658 6627 6604 6599

12,740 12,630 12,580 12,540 12,530

29,670 29,470 29,370 29,300 29,280
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2. Methodology

The differential model for all of the processes consid-

ered herein is identical to that utilized by Yu et al. [2] for

uniform heating of the inner wall of an annulus and,
Table 9

Computed values of Nu0o for equal isothermal heating and cooling

a1/a2 0.01 0.05 0.1 0.2 0.5

ðaþ2 � aþ1 Þw1 Nu0oHC

500 3.166 3.177 3.211 3.295 3.584

800 3.158 3.181 3.212 3.294 3.582

1000 3.166 3.183 3.212 3.294 3.582

2000 3.176 3.186 3.215 3.295 3.581

5000 3.192 3.219 3.297 3.581

10,000 3.198 3.223 3.299 3.581

20,000 3.226 3.301 3.581

50,000 3.23 3.303 3.581

100,000 3.232 3.303 3.58

200,000 3.302 3.578

500,000 3.297 3.57

Table 8

Computed values of Nu1i for equal isothermal heating and cooling

a1/a2 0.01 0.05 0.1 0.2 0.5

ðaþ2 � aþ1 Þw1 Nu1iHC

500 94.26 42.52 38.40 35.86 34.57

800 96.85 66.54 60.40 55.99 53.48

1000 110.7 82.94 74.96 69.14 65.78

2000 214.7 166.6 146.5 132.8 125.2

5000 428.2 355.0 314.5 293.9

10,000 805.3 694.8 604.5 561.7

20,000 1367 1165 1076

50,000 3391 2794 2554

100,000 6414 5461 4938

200,000 10,810 9618

500,000 27,830 23,740

Table 7

Computed values of Nu0i for equal isothermal heating and cooling

a1/a2 0.01 0.05 0.1 0.2 0.5

ðaþ2 � aþ1 Þw1 Nu0iHC

500 45.37 14.18 9.253 6.480 4.652

800 45.37 14.16 9.243 6.475 4.652

1000 45.33 14.15 9.239 6.473 4.652

2000 45.25 14.14 9.228 6.467 4.651

5000 14.12 9.214 6.459 4.649

10,000 14.10 9.205 6.454 4.648

20,000 9.197 6.450 4.647

50,000 9.188 6.445 4.646

100,000 9.183 6.443 4.647

200,000 6.443 4.650

500,000 6.449 4.660
therefore, is not reproduced here. However, except for

heating on one wall only and for a parallel-plate channel

heated uniformly and equally on both walls, an iterative

procedure was required for the numerical integration

owing to the second thermal boundary condition, and,
0.8 0.9 0.95 0.99 0.999

3.848 3.926 3.964 3.993 3.999

3.847 3.926 3.963 3.993 3.999

3.847 3.926 3.963 3.993 3.999

3.846 3.925 3.963 3.993 3.999

3.846 3.925 3.963 3.993 3.999

3.846 3.925 3.963 3.992 3.999

3.846 3.925 3.963 3.992 3.998

3.845 3.924 3.961 3.991 3.997

3.843 3.922 3.96 3.989 3.995

3.84 3.919 3.956 3.985 3.992

3.831 3.909 3.946 3.975 3.982

0.8 0.9 0.95 0.99 0.999

34.54 34.54 34.53 34.52 34.52

53.23 53.18 53.14 53.12 53.11

65.40 65.32 65.28 65.24 65.23

124.3 124.1 124.0 123.9 123.9

291.6 291.1 290.9 290.7 290.6

557.2 556.6 556.2 555.9 555.6

1068 1067 1066 1066 1065

2534 2531 2530 2529 2529

4892 4888 4886 4884 4883

9503 9491 9486 9479 9478

23,250 23,190 23,150 23,120 23,110

0.8 0.9 0.95 0.99 0.999

4.171 4.078 4.037 4.007 4.001

4.172 4.078 4.037 4.007 4.001

4.172 4.078 4.037 4.007 4.001

4.172 4.078 4.038 4.007 4.001

4.172 4.078 4.038 4.008 4.001

4.172 4.079 4.038 4.008 4.001

4.172 4.079 4.038 4.008 4.002

4.173 4.080 4.039 4.009 4.003

4.175 4.082 4.041 4.011 4.005

4.178 4.085 4.045 4.015 4.008

4.189 4.096 4.055 4.025 4.019



Table 10

Computed values of Nu1o for equal isothermal heating and cooling

a1/a2 0.01 0.05 0.1 0.2 0.5 0.8 0.9 0.95 0.99 0.999

ðaþ2 � aþ1 Þw1 Nu1oHC

500 25.84 25.36 26.74 28.61 31.85 33.71 34.15 34.34 34.48 34.51

800 36.75 39.28 41.74 44.44 49.13 51.89 52.55 52.84 53.05 53.10

1000 43.05 48.80 51.68 54.78 60.37 63.74 64.54 64.90 65.16 65.21

2000 83.26 97.60 100.6 104.9 114.7 121.0 122.5 123.2 123.7 123.8

5000 251.8 243.7 248.1 268.9 283.7 287.4 289.0 290.3 290.5

10,000 472.8 477.7 476.8 513.7 542 549.2 552.4 554.9 555.2

20,000 941.1 919.1 983.6 1038 1052 1058 1063 1064

50,000 2341 2203 2331 2459 2493 2508 2519 2522

100,000 4415 4299 4496 4737 4801 4831 4853 4857

200,000 8479 8719 9158 9280 9335 9375 9384

500,000 21,590 21,240 22,110 22,370 22,480 22,560 22,570

Table 11

Computed values of Nu for parallel-plate channels and

isothermal heating

b+ Nu0TA Nu1TA Nu0TT Nu1TT

150 4.918 25.75 8.652 34.46
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in the case of one or more isothermal walls, to the pres-

ence of the mixed-mean temperature in the expression

for the local heat flux density.

The local heat flux density ratio in the fluid, which

occurs in the differential energy balance, is different for

the several modes of heating. It may be expressed in gen-

eral as

j
jw1

¼ � jw2
jw1

þ
1þ jw2

jw1

� �

R ða2=a1Þ2 � 1
h i

Z ða2=a1Þ2

R2

u
um

� 	
dR2; ð1Þ

where R = r/a1.

For uniform heating of the inner wall only (jw2 = 0),

as considered by Yu et al. [2], Eq. (1) reduces to

j
jw1

¼ 1

R ða2=a1Þ2 � 1
h i

Z ða2=a1Þ2

R2

u
um

� 	
dR2: ð2Þ

For equal uniform overall heating of both walls

(jw1a1 = jw2a2) it becomes

j
jw1

¼ � a1
a2

þ 1

R ða2=a1Þ � 1½ 


Z ða2=a1Þ2

R2

u
um

� 	
dR2 ð3Þ

while for uniform equal heating and cooling (jw1a1 =

�jw2a2), it reduces to

j
jw1

¼ 1
R
: ð4Þ
500 4.926 76.53 8.953 99.14

800 4.927 117.7 9.023 150.9

1000 4.928 144.5 9.050 184.5

2000 4.929 274.0 9.119 344.9

5000 4.930 640.6 9.188 793.4

10,000 4.931 1221 9.230 1496

20,000 4.931 2333 9.266 2830

50,000 4.932 5505 9.307 6598

100,000 4.932 10,560 9.335 12,550

200,000 4.932 20,290 9.360 23,940

500,000 4.933 48,220 9.389 56,380
3. Numerical integrations

Numerical integrations for uniform heating on the

outer wall and for combined uniform heating and cool-

ing were carried out for a series of values of the aspect

ratio extending from 0.01 to 0.999, but the calculations

for isothermal heating were limited to parallel plates.

In all instances the integrations were carried out for 25
values of Pr, extending from 0 to 10,000, and a wide

range of values of ðaþ2 � aþ1 Þw1, extending from the pre-
sumed minimum of 150 for fully developed turbulent

flow up to 500,000, which corresponds to

Re ffi 30,000,000 and is obviously greater than any value
of practical interest.

Although the complete distribution of the tempera-

ture was determined by step-wise numerical integration,

and then the mixed-mean temperature by integration of

those values, weighted by the velocity, over the cross-

section, the thermal results are presented only in terms

of Nu and Tþ
w2, the dimensionless temperature of the out-

er surface. Because the generalized, algebraic predictive

expressions of Churchill and Zajic [3], as described in

slightly improved form by Yu et al. [2], require numeri-

cal values only for Nu0 = Nu{Pr = 0} and

Nu1 = Nu{Pr = Prt} ffi 0.8673, and the tabulations here-
in are limited to these two quantities. However, com-

puted values of the Nu for all 25 of the values of Pr

are presented graphically.
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For computational convenience the numerical inte-

grations were carried out for a series of values of

ðaþ2 � aþ1 Þw1 rather than Re as well for a series of values

of a1/a2. Yu et al. [2] provide a tabulation of the corre-

sponding values of Re, ðuþmÞwm, and sw1/swm for each
listed value of a1/a2, and ðaþ2 � aþ1 Þw1, and Kaneda et
al. [1] present algebraic expressions from which these

quantities may be calculated for intermediate values of

ðaþ2 � aþ1 Þw1 and intermediate or lower values of a1/a2.
The numerical integrations extended from ðaþ2 � aþ1 Þw1
of 150 up to 500,000, but the values of Re and ðuþmÞwm
in the aforementioned tabulation are omitted for the

bordering conditions in which, (1) the value of a match-

ing coefficient in the differential model was suspect, (2)

the attainment of fully turbulent flow was uncertain,

or (3) the convergence of the numerical values of the

time–mean velocity was uncertain. The values of Nu

computed numerically in the current work were omitted

from the tabulations herein for the same conditions, just

as they were by Yu et al. [2], on the premise that any

error in the time–mean velocity distribution will influence

the time–mean temperature distribution and thereby Nu.
4. Numerical results

Numerically computed values of Nu0oHA and Nu1oHA
for uniform heating on the outer surface only are listed

in Tables 1 and 2, respectively; of Nu0iHH and Nu1iHH in
Table 12

Fractional approach of surface temperature to mixed-mean value for

channel

a1/a2 0.01 0.05 0.1

ðaþ2 � aþ1 Þw1 Pr =

800 0.0288 0.0483

1000 0.0080 0.0279 0.0470

2000 0.0068 0.0238 0.0428

5000 0.0169 0.0374

10,000 0.0168 0.0334

20,000 0.0291

Pr = Prt
800 0.0348 0.0589

1000 0.0098 0.0339 0.0577

2000 0.0091 0.0303 0.0539

5000 0.0240 0.0489

10,000 0.0239 0.0452

20,000 0.0413

Pr

800 0.1239 0.1632

1000 0.0765 0.1243 0.1638

2000 0.0769 0.1251 0.1649

5000 0.1257 0.1657

10,000 0.1258 0.1660

20,000 0.1661
Tables 3 and 4, and of Nu0oHH and Nu1oHH in Tables 5

and 6 for equal uniform heating on both surfaces; of

Nu0iHC and Nu1iHC in Tables 7 and 8, and of Nu0oHC
and Nu1oHC in Tables 9 and 10 for equal uniform heat-

ing and cooling. Values of Nu0TA and Nu1TA for isother-

mal heating of one parallel plate and of Nu0TT and

Nu1TT for equal isothermal heating of both plates are

listed in Table 11. Here, the subscripts 0 and 1 on Nu

designate, as already mentioned, Pr = 0 and Pr = Prt,

respectively, o and i designate the inner and outer sur-

faces, respectively, and H, C, T, and A designate uni-

formly heated, uniformly cooled, isothermally heated,

and adiabatic surfaces, respectively, while HH desig-

nates equal heating, HC equal heating and cooling,

and TT equal temperatures on the two surfaces.

It should be noted that the tabulated values of Nu are

based on heat transfer between the temperature of the

indicated wall and the mixed-mean temperature of the

fluid stream. For heat transfer directly across the fluid

with no longitudinal change in the temperature of the

fluid, as in Tables 9 and 10, an alternative, and in some

sense a more meaningful quantity, for the case of Pr = 0

is Nu* based on the temperature difference between the

two walls. This limiting quantity is given for laminar

flow by the following exact solution:

Nu ¼
2 a2

a1
� 1

� �

ln a2
a1

n o : ð5Þ
uniform isothermal heating on the other wall of a parallel-plate

0.2 0.5 0.8 0.999

Prt ffi 0.8673, j2 = 0
0.0805 0.1481 0.2000 0.2153

0.0788 0.1454 0.1892 0.2114

0.0741 0.1385 0.1798 0.2003

0.0689 0.1307 0.1688 0.1875

0.0653 0.1264 0.1614 0.1787

0.0617. 0.1205 0.1545 0.1707

ffi 0.8673, j2a2/j1a1 = 0.10
0.0996 0.1937 0.2664 0.3086

0.0981 0.1914 0.2633 0.3048

0.0939 0.1849 0.2544 0.2944

0.0891 0.1777 0.2440 0.2821

0.0858 0.1729 0.2371 0.2737

0.0826 0.1683 0.2307 0.2662

= 0, j2a2/j1a1 = 0.10

0.2247 0.3613 0.4634 0.5195

0.2256 0.3628 0.4657 0.5221

0.2273 0.3668 0.4710 0.5284

0.2287 0.3698 0.4756 0.5339

0.2293 0.3715 0.4779 0.5393

0.2299 0.3728 0.4806 0.5393



Fig. 1. Representation of the numerically computed values of

Nu for uniform heating of the outer wall of an annulus by the

predictive equations of Churchill and Zajic [3].
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In the limit of a2/a1!1, Nu*!2, which differs from the
limiting value of � 4 in Tables 7 and 10 because of the
doubled temperature difference. The value of Nu0 ap-

proaches 4 as a2/a1!1 because Tm! (T1 + T2)/2 regard-

less of the velocity distribution.

The values of Nu in Tables 1–12, together with those

of Yu et al. [2] for uniform inner heating only, namely,
NuiHA, encompass, by virtue of superposition, as dis-

cussed by Yu et al. [4], the final paper in this series, all

aspects of fully developed convection in annuli except

for isothermal heating on one or both walls for a1/a2 less

than unity.
5. Graphical representations

The computed values of Nu for 25 values of Pr/Prt
are compared in Figs. 1–4 with the generalized, predic-

tive equations of Churchill and Zajic [3] for all geome-

tries and thermal boundary conditions, as slightly

rearranged by Yu et al. [2]. The agreement is very good

for all of the conditions, and justifies the tabulation

herein of values of Nu0 and Nu1 only.

5.1. Comparisons of computed values of Nu with

experimental data and prior computed values

Experimental data for heating on the outer surface

or on both surfaces are scarcer than those for heating

only on the inner surface, the condition examined by

Yu et al. [2]. Those of Leung [5], Vilemas et al. [6],

and Petukhov and Roizen [7] for air, and of Monrad

and Pelton [8] For water are plotted in Fig. 5 versus

the values predicted herein. These ‘‘predicted’’ values

were obtained by interpolation of the computed values

of Nu. The values of Monrad and Pelton fall consist-

ently below the predictions based on the numerical inte-

grations. The values of the other investigators suggest a

slightly greater rate of increase with the magnitude of

Nu and hence with Re. However, the overall agreement

is good. The prior numerically computed values of Kays

and Leung [9] for uniform outer heating and Pr = 0.7

may also be seen to be in good agreement with the

new predictions.

On the other hand, as indicated in Fig. 6, the single

set of experimental values for unequal uniform heating

(jw1a1 = 1.29jw2a2) of air by Vilemas et al., for Nui fall

significantly below the predictions, while those for Nuo
fall slightly above.

5.2. Implementation

The predictions of Nu as a function of Pr/Prt are

independent of the dependence of Prt on Pr, but an

expression for this dependence is obviously required to

determine numerical values of Nu. As discussed by

Churchill [10], the existing expressions for Prt are quite

uncertain, but, as demonstrated by Yu et al. [11] for

round tubes, the predicted values of Nu are fortuitously

insensitive to Prt, and thereby to this uncertainty.

Eqs. (21) and (22) of Yu et al. [11] predict Nu as a

function of Nu0, Nu1, Nu
1
1, and Pr/Prt with virtually

no empiricism. Nu11 is subject to a small degree of uncer-



Fig. 2. Representation of the numerically computed values of Nu for uniform equal heating of the walls of an annulus by the predictive

equations of Churchill and Zajic [3].
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tainty in the coefficient 0.07343, which was determined

from direct numerical simulations of the flow, and to

the minor uncertainties in ðuþmÞwm, as determined by
the numerical integrations or from the predictive equa-

tion of Kaneda et al. [1]. Finally, some empiricism and

uncertainty is associated with the prediction of swm/sw1
and thereby in the determination of Re and ðuþmÞwm for
a chosen value ðaþ2 � aþ1 Þw1.

5.3. Surface temperature of outer wall

The temperature of the outer wall is of practical

interest in two different contexts, first as a controlling

factor in the heat losses to the surroundings, and second

in terms of the safety of personnel from burns on con-

tact. The effect of thermal insulation will not be consid-
ered here since turbulent convection in annuli does not

introduce anything novel in this respect.

The numerical integrations for the temperature distri-

bution yielded the dimensionless temperature Tþ
w2 on

bare outer surface, and this value, together with the cor-

responding mixed-mean value Tþ
m, were utilized to calcu-

late the quantity
Tþ
w2

Tþ
m
� 1 ¼ Tm�Tw2

Tw1�Tm
. Values are listed in

Table 12 for three representative conditions, namely

Pr = Prt ffi 0.8673 with heat losses of 0% and 10%, and
Pr = 0 with heat losses of 10%. The quantity Tm�Tw2

Tw1�Tm
rep-

resents the difference between the mixed-mean and

outer-wall temperature as a fraction of the difference be-

tween the inner-wall and mixed-mean temperature. The

values for j2 = 0, indicate the decrease in the outer-wall

temperature due to imperfect transport of energy in

the fluid and those for a heat loss of 10% to the



Fig. 3. Representation of the numerically computed values of Nu for equal uniform heating and cooling of the walls of an annulus by

the predictive equations of Churchill and Zajic [3].
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surroundings that effect as well. It may be observed in

Table 12 that this ratio of temperature differences de-

creases with a decreasing aspect ratio and with a

decreasing Prandtl number. It decreases very slowly with

an increasing rate of flow for Pr = Prt ffi 0.8673, but, on
the other hand, increases very slowly with increasing

flow for Pr = 0.
6. Summary and conclusions

The results presented herein, when combined with

those of Yu et al. [2] for heating of the inner wall, and

generalized by superposition (Yu et al. [4]), encompass

essentially all thermal boundary conditions that result

in fully developed turbulent convection in annuli. The
computed values of Nu0 and Nu1 presented in tabular

form herein are shown in Figs. 1–4 to be sufficient to pre-

dict with a high degree of accuracy the dependence of Nu

on Pr/Prt for all values of ðaþ2 � aþ1 Þw1, all values of a1/a2,
and all thermal boundary conditions. Since Re bears a

one-to-one correspondence to ðaþ2 � aþ1 Þw1 for a specified
value of a1/a2, these plots are an implicit test of the

dependence on Re. At the same time, they confirm the

accuracy and generality of the predictive equations of

Churchill and Zajic [3]. A test of the validity and accu-

racy of the numerically computed values of Nu is pro-

vided in the comparisons with experimental data in

Figs. 5 and 6. In view of the limited data for such thermal

boundary conditions, the comparisons by Yu et al. [2] of

the predictions of numerical computations using the

same model with the much more extensive experimental



Fig. 4. Representation of the numerically computed values of

Nu for equal uniform heating and cooling of the walls of an

annulus by the predictive equations of Churchill and Zajic [3].

Fig. 6. Comparison of predicted and experimental values of Nu

for annuli uniformly heated on both walls with (jw1a1)/

(jw2a2) = 1.29.
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data for uniform inner heating, and the theoretical cre-

dentials of the modeling are perhaps more assuring.
Fig. 5. Comparison of predicted and experimental values o
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